organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Maleopimaric acid acetic acid solvate

Meng Zhang, Yong-hong Zhou,* Xiao-xin Guo and Li-hong Hu

Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, People's Republic of China Correspondence e-mail: zm205@sohu.com

Received 15 June 2009; accepted 20 June 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.110; data-to-parameter ratio = 9.3.

The title compound, $C_{24}H_{32}O_5 \cdot C_2H_4O_2$, is a derivative of abietic acid. The two fused and unbridged cyclohexane rings have chair conformations and the anhydride ring is planar. Of the other three six-membered rings, two have boat conformations and one has a twist-boat conformation. The crystal structure is stabilized by intermolecular $O-H \cdot \cdot \cdot O$ and $C-H \cdot \cdot \cdot O$ hydrogen bonds.

Related literature

For general background, see: McCoy (2000); Schweizer *et al.* (2003); Savluchinske-Feio *et al.* (2007). For the crystal structure of a similar compound, see: Pan *et al.* (2006). For standard bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data C₂₄H₃₂O₅·C₂H₄O₂

 $M_r = 460.55$

Orthorhombic, $P2_12_12_1$ a = 7.9469 (10) Å b = 12.7755 (16) Å c = 24.884 (3) Å $V = 2526.3 (5) \text{ Å}^3$

Data collection

Bruker SMART APEX CCD	13853 measured reflections
diffractometer	2837 independent reflections
Absorption correction: multi-scan	2432 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.059$
$T_{\min} = 0.97, \ T_{\max} = 0.98$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 304 parameters $wR(F^2) = 0.110$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.19$ e Å⁻³2837 reflections $\Delta \rho_{min} = -0.17$ e Å⁻³

Z = 4

Mo $K\alpha$ radiation

 $0.30 \times 0.26 \times 0.24$ mm

 $\mu = 0.09 \text{ mm}^{-1}$

T = 291 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$04-H4C\cdots O6$ $07-H7A\cdots O5$ $C13-H13C\cdots O5^{i}$ $C26-H26B\cdots O1^{ii}$	0.93 0.93 0.96 0.96	1.70 1.76 2.59 2.56	2.617 (3) 2.681 (3) 3.137 (5) 3.369 (4)	169 171 117 142

Symmetry codes: (i) x, y - 1, z; (ii) x - 1, y + 1, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the President of the Chinese Academy of Forestry Foundation (CAFYBB2008009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2334).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- McCoy, M. (2000). Chem. Eng. News, 78, 13-15.
- Pan, Y.-M., Yang, L., Wang, H.-S., Zhao, Z.-C. & Zhang, Y. (2006). Acta Cryst. E62, 05701–05703.
- Savluchinske-Feio, S., Nunes, L., Pereira, P. T., Silva, A. M., Roseiro, J. C., Gigante, B. & Curto, M. J. M. (2007). J. Microbiol. Methods, 70, 465–470.

Schweizer, R. A. S., Atanasoc, A. G., Frey, B. M. & Odermatt, A. (2003). *Mol. Cell. Endocrinol.* 212, 41–49.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o1714 [doi:10.1107/S1600536809023745]

Maleopimaric acid acetic acid solvate

M. Zhang, Y. Zhou, X. Guo and L. Hu

Comment

Rosin, a versatile natural resin, possesses a rare combination of many desirable properties and has consequently found innumerable industrial uses in a modified form or in conjunction with other natural or synthetic resins (McCoy, 2000). Abietic type resin acid is the major component of gum rosin, including abietic acid, neoabietic acid, levo-pimaric acid, palustric acid and is a high quality biomass resource in developing chiral new drugs (Schweizer *et al.*, 2003). Abietic acid and its derivatives are readily available hydrophenanthrene compounds which form useful starting materials for the design and synthesis of industrially and physiologically important products (Savluchinske-Feio *et al.*, 2007).

The crystal structure of a similar compound, also a derivative of maleopimaric acid, has already been published (Pan *et al.*, 2006). The molecular structure of the title compound, is shown in Fig. 1. The asymmetric unit consists of two molecules, viz. maleopimaric anhydride and acetic acid. The cyclohexane rings C5, C6, C14–C16, C21 and C16–C21 have typical chair forms. The cyclohexane ring C2–C7 has a slightly distorted twist-boat conformation; the other two six-membered rings adopt boat conformations. The configuration about the C9=C10 bond is *Z* (Fig. 1), with the H atom and the isopropyl group *cis* with respect to each other. The bond lengths (Allen *et al.*, 1987) and bond angles exhibit normal values. In the crystal structure, the molecules are linked (Fig.2) by O—H…O and C—H…O intermolecular hydrogen bonds, also by van der Waals forces.

Experimental

Rosin (10.0 g), acetic acid (7 ml), and maleic anhydride (3.0 g) were put into a 50-ml three-necked flask and magnetically stirred; the mixture was stirred for 20 min with power 450w. The solution was put into 5 ml glacial acetic acid and cooled, washed with hot water (10 ml), dried (MgSO₄), and concentrated to dryness. Recrystallization from ethanol afforded the adduct (7.5 g, 50%).

Refinement

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry, with C—H distances of 0.96 Å and $U_{iso}(H) = 1.5U_{eq}$, but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$; O—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(O)$. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1. A view of the molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2. The packing of the title compound, viewed along the *a* axis. Dashed lines indicate hydrogen bonds.

Maleopimaric acid acetic acid solvate

Crystal data

$C_{24}H_{32}O_5 \cdot C_2H_4O_2$	$D_{\rm x} = 1.211 {\rm ~Mg~m}^{-3}$
$M_r = 460.55$	Melting point: 498 K
Orthorhombic, $P2_12_12_1$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 3636 reflections
a = 7.9469 (10) Å	$\theta = 2.3 - 23.2^{\circ}$
b = 12.7755 (16) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 24.884 (3) Å	T = 291 K
$V = 2526.3 (5) \text{ Å}^3$	Block, colorless
Z = 4	$0.30 \times 0.26 \times 0.24 \text{ mm}$
$F_{000} = 992$	

Data collection

Bruker SMART APEX CCD diffractometer	2837 independent reflections
Radiation source: sealed tube	2432 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.059$
T = 291 K	$\theta_{\text{max}} = 26.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -9 \rightarrow 8$
$T_{\min} = 0.97, \ T_{\max} = 0.98$	$k = -15 \rightarrow 15$
13853 measured reflections	$l = -27 \rightarrow 30$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.05P)^{2} + 0.55P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.110$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
2837 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
304 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Duine and a start aits 1 and in a start start in a start diaset	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0076 (9)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. The Friedel pairs have been merged in the absence of anomalous scattering.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.5002 (4)	-0.1408 (3)	0.21013 (13)	0.0419 (7)
C2	0.5980 (4)	-0.0411 (2)	0.20070 (12)	0.0398 (7)
H2	0.6794	-0.0301	0.2297	0.048*
C3	0.6887 (4)	-0.0420 (2)	0.14559 (13)	0.0417 (7)
Н3	0.7696	-0.0998	0.1434	0.050*
C4	0.7802 (4)	0.0670 (2)	0.14272 (13)	0.0426 (7)
H4A	0.8616	0.0723	0.1716	0.051*
H4B	0.8400	0.0730	0.1089	0.051*
C5	0.6514 (4)	0.1559 (2)	0.14754 (14)	0.0411 (7)
H5	0.6683	0.1867	0.1832	0.049*
C6	0.4713 (4)	0.1086 (2)	0.14794 (13)	0.0414 (7)
C7	0.4657 (4)	0.0448 (2)	0.20125 (12)	0.0409 (7)
H7	0.4851	0.0916	0.2318	0.049*
C8	0.3020 (4)	-0.0147 (3)	0.20917 (13)	0.0442 (8)
C9	0.4523 (4)	0.0321 (3)	0.10233 (12)	0.0429 (7)

Н9	0.3687	0.0390	0.0764	0.052*
C10	0.5648 (4)	-0.0472 (3)	0.10145 (12)	0.0453 (8)
C11	0.5732 (5)	-0.1285 (3)	0.05890 (15)	0.0552 (10)
H11	0.6773	-0.1203	0.0383	0.066*
C12	0.4230 (5)	-0.1334 (3)	0.02054 (15)	0.0553 (10)
H12A	0.3219	-0.1455	0.0407	0.083*
H12B	0.4391	-0.1895	-0.0046	0.083*
H12C	0.4137	-0.0683	0.0015	0.083*
C13	0.5604 (5)	-0.2392 (3)	0.07953 (13)	0.0503 (9)
H13A	0.6437	-0.2503	0.1069	0.075*
H13B	0.5788	-0.2873	0.0505	0.075*
H13C	0.4504	-0.2505	0.0944	0.075*
C14	0.3351 (4)	0.1953 (2)	0.14874 (13)	0.0434 (7)
H14A	0.2267	0.1642	0.1406	0.052*
H14B	0.3287	0.2247	0.1846	0.052*
C15	0.3695 (4)	0.2827 (2)	0.10897 (13)	0.0427 (8)
H15A	0.3630	0.2555	0.0726	0.051*
H15B	0.2849	0.3369	0.1128	0.051*
C16	0 5419 (4)	0.3288(2)	0 11854 (13)	0.0409(7)
H16	0.5485	0 3405	0 1574	0.049*
C17	0.5691 (4)	0 4405 (3)	0.09213 (12)	0.0408(7)
C18	0.7484(4)	0.4797 (3)	0.10755 (14)	0.0442(8)
H18A	0.7707	0.5453	0.0893	0.053*
H18R	0.7528	0.4925	0.1459	0.053*
C19	0.8818 (4)	0.1923 0.4017(3)	0.09266 (15)	0.0491 (9)
H19A	0.9912	0.4293	0.1026	0.059*
H10R	0.8809	0.3014	0.0540	0.059*
C20	0.8550(4)	0.3914 0.2952 (3)	0.0340 0.12078 (14)	0.035
H20A	0.8616	0.2032 (5)	0.159/	0.0430(0)
H20R	0.0437	0.3047	0.1394	0.054*
C21	0.9437	0.2474	0.1102 0.10508 (12)	0.034
C21	0.0810(4)	0.24/1(2)	0.10398(12)	0.0403(7)
U22	0.0830 (4)	0.2001 (3)	0.04087 (12)	0.0429 (7)
H22A	0.5701	0.1900	0.0337	0.064*
П22Б	0.7301	0.1437	0.0449	0.064*
H22C	0.7300	0.2387	0.0238	0.004
C23	0.5378 (5)	0.4443 (3)	0.03186 (12)	0.0445 (7)
H23A	0.4192	0.4508	0.0252	0.06/*
H23B	0.5789	0.3812	0.0156	0.06/*
H23C	0.5955	0.5034	0.0168	0.06/*
C24	0.4419 (4)	0.5116 (3)	0.11930 (13)	0.0426 (7)
C25	0.1024 (4)	0.6778 (3)	0.18987 (14)	0.0460 (8)
C26	-0.0272 (4)	0.7410 (3)	0.21888 (13)	0.0484 (8)
H26A	-0.0330	0.7187	0.2557	0.073*
H26B	-0.1348	0.7313	0.2021	0.073*
H26C	0.0031	0.8137	0.2175	0.073*
01	0.5518 (3)	-0.22935 (16)	0.21417 (9)	0.0463 (6)
02	0.3332 (3)	-0.12062 (18)	0.21447 (10)	0.0472 (6)
03	0.1594 (3)	0.01506 (17)	0.21128 (9)	0.0453 (5)
O4	0.4493 (3)	0.51827 (17)	0.17031 (8)	0.0455 (6)

-0.0055 (15)

-0.0127(15)

0.0007 (14)

0.0028 (14)

0.0056(15)

0.0170 (16)

0.0029 (15)

0.0125 (14)

0.0126 (14)

0.0012 (15)

-0.0131(14)

-0.0064(15)

0.0139 (16)

0.0177 (12)

0.0054 (12)

0.0100 (11)

-0.0129(11)

-0.0092(11)

-0.0067(11)

-0.0119(10)

0.0019 (14)

-0.0028(13)

0.0027 (13)

0.0037 (14)

0.0080(14)

0.0135 (16)

0.0114 (15)

0.0013 (13)

-0.0080(14)

0.0056 (14)

-0.0023(13)

0.0150 (15)

0.0172 (16)

0.0161 (10)

0.0177 (10)

0.0107 (10)

-0.0074 (9)

0.0108 (10)

0.0144 (10)

0.0153 (11)

H4C	0.3728	0.5602	0.18	87	0.055*	
O5	0.3379 (3)	0.55953	(19) 0.09	249 (8)	0.0472 (6)	
O6	0.2043 (3)	0.62457	(17) 0.21	453 (9)	0.0465 (6)	
07	0.1034 (3)	0.68154	(18) 0.13	804 (9)	0.0462 (6)	
H7A	0.1831	0.6430	0.11	91	0.055*	
Atomic disp	placement parameter:	$s(A^2)$				
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
C1	0.0453 (18)	0.0411 (16)	0.0395 (17)	0.0089 (14)	-0.0018 (14)	0.0098 (14)
C2	0.0398 (17)	0.0409 (17)	0.0389 (16)	0.0087 (14)	0.0007 (13)	-0.0023 (13)
C3	0.0443 (17)	0.0377 (15)	0.0431 (17)	0.0077 (14)	0.0041 (15)	0.0005 (13)
C4	0.0427 (17)	0.0423 (17)	0.0428 (17)	0.0049 (14)	0.0031 (14)	0.0012 (14)
C5	0.0417 (17)	0.0386 (16)	0.0430 (17)	0.0036 (13)	0.0036 (15)	-0.0003 (13)
C6	0.0400 (16)	0.0405 (16)	0.0437 (17)	0.0004 (13)	-0.0006 (15)	-0.0001 (14)
C7	0.0403 (17)	0.0403 (16)	0.0420 (17)	0.0049 (14)	-0.0029 (14)	-0.0019 (13)
C8	0.0434 (18)	0.0452 (18)	0.0441 (18)	0.0096 (15)	0.0095 (15)	0.0081 (14)
C9	0.0470 (17)	0.0430 (17)	0.0388 (16)	0.0055 (15)	-0.0113 (15)	-0.0024 (13)
C10	0.0439 (18)	0.0488 (19)	0.0433 (17)	0.0118 (15)	0.0043 (15)	-0.0102 (14)
C11	0.067 (2)	0.0469 (19)	0.051 (2)	0.0168 (19)	-0.0152 (19)	-0.0133 (16)
C12	0.059 (2)	0.050 (2)	0.057 (2)	0.0163 (18)	-0.0149 (19)	-0.0216 (17)
C13	0.0488 (19)	0.056 (2)	0.0461 (19)	-0.0147 (17)	0.0107 (16)	-0.0149 (15)

0.0418 (17)

0.0411 (17)

0.0418 (17)

0.0397 (15)

0.0469 (18)

0.0522 (19)

0.0459 (18)

0.0406 (16)

0.0420 (17)

0.0456 (17)

0.0443 (17)

0.0496 (19)

0.0468 (18)

0.0480 (12)

0.0511 (13)

0.0477 (12)

0.0422 (12)

0.0376 (11)

0.0436 (12)

0.0044 (15)

0.0070(15)

0.0102 (14)

0.0031 (14)

-0.0079(15)

-0.0018(15)

-0.0015 (15)

0.0058 (14)

0.0118 (15)

0.0112 (15)

0.0118 (15)

0.0143 (15)

0.0114 (16)

0.0178 (11)

0.0058 (11)

0.0104 (11)

0.0174 (11)

0.0186 (11)

0.0148 (11)

0.0169 (10)

0.0470 (17)

0.0365 (16)

0.0392 (16)

0.0441 (17)

0.0406 (18)

0.0445 (18)

0.0394 (16)

0.0441 (17)

0.0417 (17)

0.0411 (17)

0.0466 (18)

0.0536 (19)

0.0413 (12)

0.0468 (12)

0.0465 (12)

0.0462 (12)

0.0539 (14)

0.0495 (13)

0.051 (2)

0.0414 (17)

0.0506 (19)

0.0417 (17)

0.0387 (16)

0.0451 (17)

0.0444 (18)

0.0445 (18)

0.0416 (17)

0.0426 (17)

0.0463 (18)

0.0422 (17)

0.0419 (18)

0.0450 (18)

0.0498 (13)

0.0437 (13)

0.0417 (13)

0.0480(13)

0.0502 (13)

0.0465 (13)

07	0.0442 (13)	0.0469 (12)	0.0475 (13)
Geometric	parameters (Å, °)		
C101		1.207 (4)	C1

C14

C15

C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

01

O2

03

04

05

06

C1—O1	1.207 (4)	C14—H14B	0.9700
C1—O2	1.356 (4)	C15—C16	1.510 (5)
C1—C2	1.511 (5)	C15—H15A	0.9700
C2—C7	1.520 (4)	C15—H15B	0.9700

C2—C3	1.550 (4)	C16—C21	1.552 (4)
C2—H2	0.9800	C16—C17	1.586 (4)
C3—C10	1.477 (5)	C16—H16	0.9800
C3—C4	1.573 (4)	C17—C24	1.518 (5)
С3—Н3	0.9800	C17—C23	1.521 (4)
C4—C5	1.533 (4)	C17—C18	1.558 (5)
C4—H4A	0.9700	C18—C19	1.501 (5)
C4—H4B	0.9700	C18—H18A	0.9700
C5—C6	1.553 (4)	C18—H18B	0.9700
C5—C21	1.576 (4)	C19—C20	1.544 (4)
С5—Н5	0.9800	C19—H19A	0.9700
С6—С9	1.505 (4)	C19—H19B	0.9700
C6—C14	1.549 (4)	C20—C21	1.557 (5)
C6—C7	1.557 (4)	C20—H20A	0.9700
С7—С8	1.519 (5)	С20—Н20В	0.9700
С7—Н7	0.9800	C21—C22	1.561 (4)
C8—O3	1.197 (4)	C22—H22A	0.9600
C8—O2	1.382 (4)	С22—Н22В	0.9600
C9—C10	1.351 (5)	C22—H22C	0.9600
С9—Н9	0.9300	C23—H23A	0.9600
C10-C11	1.485 (4)	С23—Н23В	0.9600
C11—C13	1.507 (5)	С23—Н23С	0.9600
C11—C12	1.529 (5)	C24—O5	1.226 (4)
C11—H11	0.9800	C24—O4	1.274 (4)
C12—H12A	0.9600	C25—O6	1.223 (4)
C12—H12B	0.9600	C25—O7	1.291 (4)
C12—H12C	0.9600	C25—C26	1.494 (5)
C13—H13A	0.9600	C26—H26A	0.9600
C13—H13B	0.9600	С26—Н26В	0.9600
C13—H13C	0.9600	C26—H26C	0.9600
C14—C15	1.517 (4)	O4—H4C	0.9300
C14—H14A	0.9700	O7—H7A	0.9300
O1—C1—O2	120.3 (3)	H14A—C14—H14B	107.8
O1—C1—C2	128.9 (3)	C16—C15—C14	110.3 (3)
O2—C1—C2	110.8 (3)	C16-C15-H15A	109.6
C1—C2—C7	104.6 (3)	C14—C15—H15A	109.6
C1—C2—C3	111.8 (3)	C16—C15—H15B	109.6
C7—C2—C3	109.6 (2)	C14—C15—H15B	109.6
C1—C2—H2	110.3	H15A—C15—H15B	108.1
С7—С2—Н2	110.3	C15-C16-C21	110.7 (3)
C3—C2—H2	110.3	C15-C16-C17	114.1 (3)
C10—C3—C2	110.4 (3)	C21—C16—C17	115.1 (3)
C10—C3—C4	108.3 (3)	C15-C16-H16	105.3
C2—C3—C4	104.4 (3)	C21—C16—H16	105.3
С10—С3—Н3	111.2	C17—C16—H16	105.3
С2—С3—Н3	111.2	C24—C17—C23	108.1 (3)
С4—С3—Н3	111.2	C24—C17—C18	107.9 (3)
C5—C4—C3	110.1 (3)	C23—C17—C18	112.5 (3)
C5—C4—H4A	109.6	C24—C17—C16	105.3 (3)

C3—C4—H4A	109.6	C23—C17—C16	114.5 (3)
C5—C4—H4B	109.6	C18—C17—C16	108.2 (3)
C3—C4—H4B	109.6	C19—C18—C17	111.8 (3)
H4A—C4—H4B	108.2	C19—C18—H18A	109.2
C4—C5—C6	109.1 (2)	C17—C18—H18A	109.2
C4—C5—C21	113.4 (3)	C19—C18—H18B	109.2
C6—C5—C21	115.4 (3)	C17—C18—H18B	109.2
C4—C5—H5	106.1	H18A—C18—H18B	107.9
С6—С5—Н5	106.1	C18—C19—C20	112.0 (3)
C21—C5—H5	106.1	С18—С19—Н19А	109.2
C9—C6—C14	113.8 (3)	С20—С19—Н19А	109.2
C9—C6—C5	109.9 (3)	C18—C19—H19B	109.2
C14—C6—C5	111.5 (2)	С20—С19—Н19В	109.2
C9—C6—C7	107.5 (3)	H19A—C19—H19B	107.9
C14—C6—C7	110.1 (3)	C19—C20—C21	111.3 (3)
C5—C6—C7	103.6 (3)	С19—С20—Н20А	109.4
C8—C7—C2	103.4 (2)	C21—C20—H20A	109.4
C8—C7—C6	113.4 (3)	С19—С20—Н20В	109.4
C2—C7—C6	110.5 (3)	C21—C20—H20B	109.4
С8—С7—Н7	109.8	H20A—C20—H20B	108.0
С2—С7—Н7	109.8	C16—C21—C20	108.6 (3)
С6—С7—Н7	109.8	C16—C21—C22	115.0 (3)
O3—C8—O2	118.4 (3)	C20—C21—C22	110.3 (3)
O3—C8—C7	131.1 (3)	C16—C21—C5	105.0 (2)
O2—C8—C7	110.4 (3)	C20—C21—C5	105.6 (3)
C10—C9—C6	115.6 (3)	C22—C21—C5	111.8 (3)
С10—С9—Н9	122.2	C21—C22—H22A	109.5
С6—С9—Н9	122.2	C21—C22—H22B	109.5
C9—C10—C3	113.3 (3)	H22A—C22—H22B	109.5
C9—C10—C11	124.5 (3)	C21—C22—H22C	109.5
C3—C10—C11	122.1 (3)	H22A—C22—H22C	109.5
C10-C11-C13	114.2 (3)	H22B—C22—H22C	109.5
C10-C11-C12	116.0 (3)	С17—С23—Н23А	109.5
C13—C11—C12	97.0 (3)	С17—С23—Н23В	109.5
C10-C11-H11	109.7	H23A—C23—H23B	109.5
C13—C11—H11	109.7	С17—С23—Н23С	109.5
C12—C11—H11	109.7	H23A—C23—H23C	109.5
C11—C12—H12A	109.5	H23B—C23—H23C	109.5
C11—C12—H12B	109.5	O5—C24—O4	122.7 (3)
H12A—C12—H12B	109.5	O5—C24—C17	120.4 (3)
C11—C12—H12C	109.5	O4—C24—C17	116.9 (3)
H12A—C12—H12C	109.5	O6—C25—O7	121.2 (3)
H12B-C12-H12C	109.5	O6—C25—C26	121.0 (3)
C11—C13—H13A	109.5	O7—C25—C26	117.9 (3)
C11—C13—H13B	109.5	C25—C26—H26A	109.5
H13A—C13—H13B	109.5	С25—С26—Н26В	109.5
C11—C13—H13C	109.5	H26A—C26—H26B	109.5
H13A—C13—H13C	109.5	С25—С26—Н26С	109.5
H13B—C13—H13C	109.5	H26A—C26—H26C	109.5

C15—C14—C6	113.1 (3)	H26B—C26—H26C	109.5
C15—C14—H14A	109.0	C1—O2—C8	110.7 (3)
C6—C14—H14A	109.0	C24—O4—H4C	119.9
C15—C14—H14B	109.0	С25—О7—Н7А	119.5
C6—C14—H14B	109.0		
01—C1—C2—C7	-178.2(3)	C3—C10—C11—C12	171.8 (3)
O2—C1—C2—C7	1.4 (4)	C9—C6—C14—C15	-79.4 (3)
O1—C1—C2—C3	63.3 (5)	C5-C6-C14-C15	45.5 (4)
O2—C1—C2—C3	-117.1 (3)	C7—C6—C14—C15	159.9 (3)
C1—C2—C3—C10	63.1 (3)	C6—C14—C15—C16	-55.4 (4)
C7—C2—C3—C10	-52.4 (3)	C14—C15—C16—C21	66.0 (3)
C1—C2—C3—C4	179.3 (3)	C14—C15—C16—C17	-162.3 (3)
C7—C2—C3—C4	63.8 (3)	C15—C16—C17—C24	62.4 (3)
C10—C3—C4—C5	58.8 (3)	C21—C16—C17—C24	-168.1 (3)
C2—C3—C4—C5	-58.8 (3)	C15—C16—C17—C23	-56.2 (4)
C3—C4—C5—C6	-5.6 (4)	C21—C16—C17—C23	73.3 (4)
C3—C4—C5—C21	-135.8 (3)	C15—C16—C17—C18	177.5 (3)
C4—C5—C6—C9	-48.9 (3)	C21—C16—C17—C18	-53.0 (3)
C21—C5—C6—C9	80.1 (3)	C24—C17—C18—C19	167.7 (3)
C4—C5—C6—C14	-176.0 (3)	C23—C17—C18—C19	-73.2 (4)
C21—C5—C6—C14	-47.0 (4)	C16-C17-C18-C19	54.3 (3)
C4—C5—C6—C7	65.7 (3)	C17—C18—C19—C20	-59.5 (4)
C21—C5—C6—C7	-165.3 (3)	C18-C19-C20-C21	59.2 (4)
C1—C2—C7—C8	-1.8 (3)	C15-C16-C21-C20	-175.5 (3)
C3—C2—C7—C8	118.1 (3)	C17—C16—C21—C20	53.2 (3)
C1—C2—C7—C6	-123.5 (3)	C15—C16—C21—C22	60.3 (4)
C3—C2—C7—C6	-3.5 (4)	C17—C16—C21—C22	-70.9 (4)
C9—C6—C7—C8	-60.5 (3)	C15—C16—C21—C5	-62.9 (3)
C14—C6—C7—C8	64.0 (3)	C17—C16—C21—C5	165.8 (3)
C5—C6—C7—C8	-176.7 (2)	C19—C20—C21—C16	-54.0 (3)
C9—C6—C7—C2	55.1 (3)	C19—C20—C21—C22	72.8 (3)
C14—C6—C7—C2	179.5 (3)	C19—C20—C21—C5	-166.2 (3)
C5—C6—C7—C2	-61.2 (3)	C4—C5—C21—C16	-178.6 (3)
C2—C7—C8—O3	-178.1 (4)	C6—C5—C21—C16	54.4 (3)
C6—C7—C8—O3	-58.4 (5)	C4—C5—C21—C20	-63.9 (3)
C2—C7—C8—O2	1.8 (3)	C6—C5—C21—C20	169.2 (3)
C6—C7—C8—O2	121.5 (3)	C4—C5—C21—C22	56.1 (4)
C14—C6—C9—C10	-177.5 (3)	C6—C5—C21—C22	-70.9 (3)
C5—C6—C9—C10	56.7 (4)	C23—C17—C24—O5	0.2 (4)
C7—C6—C9—C10	-55.3 (4)	C18—C17—C24—O5	122.0 (3)
C6—C9—C10—C3	-1.2 (4)	C16—C17—C24—O5	-122.7 (3)
C6—C9—C10—C11	-177.3 (3)	C23—C17—C24—O4	-180.0 (3)
C2—C3—C10—C9	57.3 (4)	C18—C17—C24—O4	-58.1 (4)
C4—C3—C10—C9	-56.4 (4)	C16—C17—C24—O4	57.2 (4)
C2-C3-C10-C11	-126.5 (3)	O1—C1—O2—C8	179.4 (3)
C4—C3—C10—C11	119.8 (4)	C2—C1—O2—C8	-0.2 (4)
C9—C10—C11—C13	-124.0 (4)	O3—C8—O2—C1	178.9 (3)
C3—C10—C11—C13	60.1 (5)	C7—C8—O2—C1	-1.1 (4)
C9—C10—C11—C12	-12.4 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H…A
O4—H4C…O6	0.93	1.70	2.617 (3)	169
O7—H7A…O5	0.93	1.76	2.681 (3)	171
C13—H13C···O5 ⁱ	0.96	2.59	3.137 (5)	117
C26—H26B···O1 ⁱⁱ	0.96	2.56	3.369 (4)	142
Symmetry codes: (i) <i>x</i> , <i>y</i> –1, <i>z</i> ; (ii) <i>x</i> –1, <i>y</i> +1, <i>z</i> .				

Fig. 2

